Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials
نویسندگان
چکیده
Hydrazine borane N2H4BH3 and alkali derivatives (i.e., lithium, sodium and potassium hydrazinidoboranes MN2H3BH3 with M = Li, Na and K) have been considered as potential chemical hydrogen storage materials. They belong to the family of boronand nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in the field could be appreciated. It stands out that, on the one hand, hydrazine borane, in aqueous solution, would be suitable for full dehydrogenation in hydrolytic conditions; the most attractive feature is the possibility to dehydrogenate, in addition to the BH3 group, the N2H4 moiety in the presence of an active and selective metal-based catalyst but for which further improvements are still necessary. However, the thermolytic dehydrogenation of hydrazine borane should be avoided because of the evolution of significant amounts of hydrazine and the formation of a shock-sensitive solid residue upon heating at >300 °C. On the other hand, the alkali hydrazinidoboranes, obtained by reaction of hydrazine borane with alkali hydrides, would be more suitable to thermolytic dehydrogenation, with improved properties in comparison to the parent borane. All of these aspects are surveyed herein and put into perspective.
منابع مشابه
In situ Synchrotron X-ray Thermodiffraction of Boranes
Boranes of low molecular weight are crystalline materials that have been much investigated over the past decade in the field of chemical hydrogen storage. In the present work, six of them have been selected to be studied by in situ synchrotron X-ray thermodiffraction. The selected boranes are ammonia borane NH3BH3 (AB), hydrazine borane N2H4BH3 (HB), hydrazine bisborane N2H4(BH3)2 (HBB), lithiu...
متن کاملCatalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions.
Safe and efficient hydrogen storage is a major obstacle for using hydrogen as an energy carrier. Therefore, intensive efforts have been focused on the development of new materials for chemical hydrogen storage. Of particular importance, hydrazine borane (N(2)H(4)BH(3)) is emerging as one of the most promising solid hydrogen carriers due to its high gravimetric hydrogen storage capacity (15.4 wt...
متن کاملLithium Hydrazinidoborane Ammoniate LiN2H3BH3·0.25NH3, a Derivative of Hydrazine Borane
Boron- and nitrogen-based materials have shown to be attractive for solid-state chemical hydrogen storage owing to gravimetric hydrogen densities higher than 10 wt% H. Herein, we report a new derivative of hydrazine borane N₂H₄BH₃, namely lithium hydrazinidoborane ammoniate LiN₂H₃BH₃·0.25NH₃. It is easily obtained in ambient conditions by ball-milling N₂H₄BH₃ and lithium amide LiNH₂ taken in eq...
متن کاملHydrazine borane: synthesis, characterization, and application prospects in chemical hydrogen storage.
Hydrazine borane (N(2)H(4)BH(3)) is the novel boron- and nitrogen-based material appearing to be a promising candidate in chemical hydrogen storage. It stores 15.4 wt% of hydrogen in hydridic and protic forms, and the challenge is to release H(2) with maximum efficiency, if possible all hydrogen stored in the material. An important step to realize this ambitious goal is to synthesize HB with hi...
متن کاملThe effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.
Potential energy surfaces for H(2) release from hydrazine interacting with borane, alane, diborane, dialane and borane-alane were constructed from MP2/aVTZ geometries and zero point energies with single point energies at the CCSD(T)/aug-cc-pVTZ level. With one borane or alane molecule, the energy barrier for H(2)-loss of approximately 38 or 30 kcal mol(-1) does not compete with the B-N or Al-N ...
متن کامل